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I.  Phys. A Math. Gen. 27 (1994) 2965-2983. Printed in the UK 
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Received 9 December 1993 

Abstract We SNdy, using dimer and Monte Carlo approaches, the critical properties and finite- 
size e f fws  of the king model on honeycomb lattices folded on the tetrahedron. We show 
that lhe main critical exponents are not affected by lhe presence of conical singularitis. The 
finite-size scaling of the position of the maxima of the specific hem does not match. however, 
wilh the scaling of the correlation length, and the thermodynamic limit is attained faster on the 
sphedcal surface than in corresponding lattices on the mrus. 

1. Introduction 

The Ising model conveys, in its simplicity, a richness of physical information which makes 
it relevant as a model for critical phenomena in different instances (ferromagnetic materials, 
lattice gas, binary alloys etc). The model is also paradigmatic of a common situation 
in statistical physics since, being one of the simplest models, it only allows analytic 
computation of the thermodynamic limit for particular classes of lattices (in one or two 
dimensions). In two dimensions, the king model in a square lattice has been solved in the 
continuum limit with cylindrical and toroidal boundary conditions [1,2]. It bas also been 
solved analytically for the two-dimensional model on a triangular or honeycomb lattice [3]. 
In general, however, the introduction of more specific boundary conditions precludes the 
resolution of the model in closed analytic form. 

On the other hand, when resorting to a numerical simulation of the observables one may 
take advantage of finite-size effects to infer the critical behaviour in the thermodynamic limit 
141. However, finite-size effects depend, in general, on the boundary conditions in a way 
that may  not^ be crucial but that cannot be predicted. There are several situations in which 
the asymptotic dependence on the spatial dimensions of the lattice has been rigorously 
studied. One of these cases corresponds to the analysis, by Ferdinand and Fisher, of 
the two-dimensional Ising model on large toroidal lattices [5 ] .  The conclusions reached 
there support, in essence, the assumptions made in discussing finite-size effects and, more 
precisely, the hypothesis of finite-size scaling [61. Some open questions are raised, however, 
regarding the approach to the critical coupling, which is drastically influenced by the shape 
of the toms. 

.§ e-mail: imtod67@ec.csic.s 
11 e-mail: imtjg64@cc.csic.s 
7 Present address: pliysics Depamnent. New York Univeniq, 4 Washington Place, New York, NY 10003. USA 
(e-mail: salas@mafalda.physics.nyu.edu). 

0305-4470194/092965+19$19.50 0 1994 IOP Publishing Ltd 2965 



2966 0 Diego et a1 

The purpose of the present paper is to investigate the finitesize effects and critical 
properties of the king model on a class of two-dimensional lattices with spherical topology. 
Our choice for the elements of this class is not arbitrary, but is rather dictated by a 
prescription which makes it possible to increase the size of the lattice without changing 
the local geometry. We propose to consider a type of honeycomb lattice folded on the 
tetrahedron, built from triangular blocks of the kind shown in figure 1 to form the faces of 
the polyhedron. One may construct a whole family of these lattices with increasing size, 
in such a way that the member of the Nth generation An has a number of lattice points 
equal to n = 12N2. The coordination number is constant in each lattice. Moreover, from 
the point of view of the simplicial geometry, the curvature is always concentrated at the 
same faces, i.e. those formed by the three-fold rings around the four vertices. In principle, 
this clearly defines the problem of taking the thermodynamic limit along our sequence of 
lattices. In [7], clear evidence was given of critical behaviour in the ferromagnetic regime, 
as well as evidence supporting the hypothesis of finite-size scaling applied to the model on 
the curved &face. 

Figure 1. A generic triangular block far honeycomb lattices embedded on the tetrahedron. 

The lattices we are considering may be understood by applying non-trivial boundary 
conditions for the honeycomb lattice on the plane, though they have the effect of introducing 
curvature into the model. We investigate the influence of these boundary conditions on finite 
size effects and, more significantly from the physical point of view, on the critical properties 
of the model. Regarding the first point, we shall see that a discrepancy arises between the 
scaling of pseudocritical coupling constants for finite lattices and the true scaling of the 
correlation length. The second issue may probably be addressed in the continuum. In fact, 
the. effect of boundary conditions in conformal field theories has been investigated before 
181. However, the inclusion of a conical singularity requires the kind of boundary condition 
which may call for a non-local operator in the theory [9], so the analysis of our model in 
the continuum does not appear to be so straightforward. 

In this paper we apply two different numerical approaches: dimers and Monte Carlo 
(MC) simulations. The first one is very useful for small lattices (up to 1452 sites) and 
provides very accurate results for the specific heat and two-point correlators. However, this 
method cannot be used to extract information about the susceptibility of any finite system 
and for large lattices and, moreover, it demands a huge storage memory not available in 
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most computers. On the other hand, MC simulations are the standard tool for performing 
such computations at any lattice size, but the typical error bars of the measured quantities 
are much larger than those given by the former method. By combining both methods, we 
are able to provide better estimates and thus more reliable results. 

The content of the paper is as follows. In section 2 we review the dimer approach 
applied to the computation of the partition functions and correlation functions of the model. 
Section 3 is devoted to the finite-size analysis of the data obtained with the above method, 
clarifying the issue concerning the U critical exponent. In section 4 we give technical details 
of the MC simulations carried out to measure some of the larger lattices. Section 5 contains 
the results for the critical exponents a, #I, y obtained after combining data from the dimer 
approach and the M c  simulations. Finally, we draw our conclusions and outline fuaher 
directions for our work. 

2. The dimer approach to the Ising model 

We review in this section the dimer formulation of the two-dimensional Ising model [lo, 1 I]. 
This approach presents the advantage of being applicable to lattices with an irregular 
coordination. It enables us to write partition functions and correlation functions in closed 
compact form, essentially in terms of the determinants of some coordination matrices for 
the lattice. This is something that cannot be achieved for our curved lattices by any other 
standard resolution method for the two-dimensional king model. There is no obvious way, 
for instance, as to how to apply the transfer-matrix method to write down the partition 
function for a lattice with the topology of the sphere, not even to produce a numerical 
computation of the same result. Within the dimer approach, one may, in principle, compute 
the partition function for any of the hexagonal lattices inscribed on the tetrahedron. Although 
we have not been able to infer from this construction the thermodynamic limit along the 
sequence of growing lattices, the method is very efficient in calculating observables like the 
specific heat or the correlation length, with arbitrary precision. One can easily progress to 
lattices with more than 1000 points, with the possibility of applying a finite-size analysis to 
study the critical behaviour of the model. 

The dimer formulation of the king model first makes use of the equivalence between the 
partition function of the model and the dimer partition function of a certain decorated lattice 
built from the original one 121. Afterward, one may apply powerful techniques developed to 
perform the sum over dimer configurations. Let us review the former correspondence for the 
hexagonal lattice while allowing for some kind of frustration which keeps the coordination 
number over the lattice constant. Given a collection of spins (q], with i running over all the 
lattice points, the partition function 2 is defined as the sum over all possible configurations 

(1) 

where the Hamiltonian H is given by the sum over allthe lattice links ( i .  j )  

The factor I /  kT is absorbed for simplicity in the definition of the nearest-neighbour coupling 
J .  It is well known that (1) can be cast as a sum over all the closed loops over the lattice. 
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Calling this collection [Zi} and [ni} &e respective numbers of links in the paths, we have 
actually 

2 = (cosh J)' x ( t a n h  J)"' 
(1. I 

(3) 

I being the total number of links of the lattice. One can draw a correspondence between each 
closed path and a dimer configuration in the appropriate decorated lattice. This is formed 
in our model by inserting a ixiangle in place of each of the points of the original lattice. 
To each of these one may assign four different states, depending on whether the point is 
traversed or not by a closed path and on the direction in the first instance. These states are 
labelled in figure 2. In a similar fashion, there are four different possible configurations 
for the dimers on each triangle and the adjacent links of the decorated lattice which bear a 
one-to-one correspondence with the above states. These dimer configurations are labelled 
in figure 3. One may easily be convinced that, by establishing the equivalence between 
the respective states in figures 2 and 3, a unique closed path can be reconstructed starting 
from a given dimer configuration in the decorated lattice, and vice versa. Furthermore, if 
a weight equal to z = tanh J is given to each dimer on a triangle link and this is equal 
to 1 for dimers joining neighbouring triangles, it is clear that the dimer partition function 
reproduces the sum in the Ising partition function (3). 

(c )  (dl 

Figure 2. The different paths through a honeycomb lattice site. 

There exist, in tum, powerful techniques developed for the computation of dimer 
partition functions, which rely mainly on the relation between these techniques and the 
Haffians of appropriate coordination matrices on the decorated lattice. We sketch here this 
relation, which has been worked out quite rigorously in [ll]. The first step is to establish 
an order relation among the points of the decorated lattice. Once this is done, one may 
assign a matrix element U,,, for points numbered p1 and p z  such that a,,, = tanh I if 
the points belong to the same triangle, apt ,  = 1 if they are nearest neighbours belonging 
to different triangles, and a,,, = 0 otherwise. The sum over all dimer configurations, 
weighted as proposed before, is equivalent to performing the sum over all permutations 
(PI, PZ? , . . P K } t  

&,a,,, ...a PX-,,, (4) 

t K is the total number of points in the decorated lanice. 
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( c )  (4 
Figure 3. The dimer configurations around a triangle of the decorated lattice 

restricted by PI < p3 < .. . P K - I  and PI < pz ,  p2 < p 4 , .  . . , PK-I < PK. While there is 
no known algorithm to compute a sum of this kind efficiently, one may think of allowing 
for an antisymmetric malxix A = {ujj),  so that the dimer partition function (a sum of all 
positive terms) may become proportional to 

~ ( - l ) p % P @ P , P .  .. .aP,-lPK (5) 

with P I  e p3 < . . . < P K - I  and PI < p z ,  p3 e p4 . .  . . , PK-I < PK, as before, and 
being the signature of the permutation. Expression (5) reproduces the definition of 

the Pfaffian of the matrix A, which may be subsequently computed as the square root of 
its determinant. The remarkable conclusion which follows from the work of [2] is that, 
for planar lattices, it is always possible to choose the sign of the nearest-neighbour matrix 
elements a,,, so that all the terms in the sum (5) have the same sign. Since the matrix A 
becomes antisymmetric, it is customary to fix the sign of each up,, pictoridly by giving 
an orientation to every link of the decorated lattice-up,p, is positive, for instance, if the 
arrow goes from p1 to pz .  We may enunciate the Kasteleyn theorem by saying that in any 
planar lattice there is always a system of arrows such that the dimer partition function can 
be computed as the Pfaffian of the corresponding antisymmetric coordination matrix. 

The lattices we consider here fall into the category of planar lattices since they have the 
topology of the sphere. As long as we are interested in dimers mainly for computational 
purposes, we simply give the recipes which have to be followed to form the appropriate 
system of arrows on a planar lattice. Once superimposed on the plane, the lattice is made 
of so-called elementary polygons which are closed cycles that do not contain points in their 
interior. On the other hand, a poIygon is said to be clockwise odd if the number of arrows 
pointing in the clockwise direction in the polygon is odd. The basic results which hold for 
planar lattices are (i) that it is always possible to choose a system of arrows such that all the 
elementary polygons are clockwise odd; and (ii) that with this choice and taking uPIPl as 
positive when the arrow goes from p1 to p z ,  all the~terms in the expansion of the Pfaffian 
(5) have the same sign. 

In om case, a possible system of arrows realizing property (i) for a decorated lattice 
inscribed on the tetrahedron is shown in figure 4, where all the arrows for the triangle 
links (not drawn) are supposed to point in the clockwise direction. The advantage of this 
choice of arrows is that it keeps a regular pattem in the bulk, while only a few arrows on 
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the boundary links have to be flipped to make all elementary polygons clockwise odd. In 
general, progressing to the next member of our family of lattices on the tetrahedron just 
amounts to adding a column of (decorated) hexagons at each side of figure 4 and expanding 
the vertical dimension appropriately. The proposed system of arrows may be extended in 
a straightforward way to larger lattices. According to the above discussion, we always 
set the absolute value of the matrix elements a,,,* equal to tanh J for points in the same 
triangle and equal to 1 for nearest neighbours on different triangles. The partition function 
for any honeycomb lattice on the tetrahedron can be represented, therefore, in terms of the 
respective matrix A by 

2 = (coshJ)’(detA)’’2. 

Figure 4. The decorated lanice for the second generation. 
identifications of boundary links which embed the lattice onto the tetrahedron. 

The outer lines show tk 

We have made use of representation (6) to perform the numerical computation of the 
maximum of the specific heat (in the ferromagnetic regime) for lattices up to A1452. In 
practice, we have calculated the determinant using the subroutines of an M S L  Library 
implemented on a VAX 9000 machine. In this procedure, the lower triangular-upper 
triangular factorization of the matrix A is performed and the main limitation is the size 
of the available computer memory for the storage of huge number of matrix elements. 
The factorization of the matrix corresponding to A972, for instance, is reached in less than 
6 min of CPU time. Furthermore, the numerical computation of the derivatives of 2 has 
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been cmied out using subroutines from the NAG Library which rely on an extension of 
the Neville algorithm. With this method we have been able to measure this quantity with 
a relative error of less than in most cases. Correspondingly, precise determination 
of the coupling constant, at which the maximum is attained in each lattice, has also been 
possible (see table 1). The values of these pseudocritical coupling constants are fundamental 
ingredients for the finite-size analysis to be accomplished in the next section. We have also 
computed the values of the specific heat of the curved lattices at the critical coupling constant 
of the planar honeycomb lattice (see table 2). These F e  also relevant under the hypothesis 
of finite-size scaling since, as we shall see, the sequence of pseudocritical temperatures 
converges in the thermodynamic limit to the critical temperature of the planar hexagonal 
lattice. 

Table 1. For each lanice size N we show the values of the maximum of the specific heat and 
its positions (CV,,, JN(CV)) and the same values for the susceptibility (xmnr. JN(x)) .  Those 
values marked with t were computed using the exact partition function [7l, those with $ using 
the dimer approach (see section 2) and those with by evaluating exactly (and numerically) the 
partition function. The rest were obtained by means of the MC simulations described in section 3. 

N CVmu JN(CV) xmzx J N ( x )  

1 
2 
3 
4 
5 
6 
7 
9 

11 
15 
21 

1.43923551(1)t 0.467332(1)' 

1.892 382 32( l)t 0.634 238(l)t 
2.07977738(1)1 0.643 862(1)t 
2.23081551(1)1 0.648580(1)t 
2.35682745(1)I 0.651 275(1)1 
2.46477396(1)1 0.652973(1)t 
2.642 88048(l)t 0.654929(1)t 
2.786536(6)$ 0.655P8(5)t 
3.02(1) 0.6571(3) 
3.30(2) 0.6579(3) 

1.652 045 95(i)i 0.608 224(1 )t 
1.256427 8(1)' 0.487805(1)' 

7.91(2) 0.6215(3) 

18.98(7) 0.6377(3) 

34.4(1) 0.6444(2) 
53.3(2) 0.6480(2) 
75.9(4) 0.6498(2) 
128.4(8) 0.6523(2) 
232(2) 0.6540(2) 

Table 2. For each lattice size N we show the values of the specific heat CVN(J,), the 
susceptibility x a ( J C )  and the magnetimtion M N ( J J  evaluated at the critical point J:". The 
symbols possess the same meaning as in table 1. 

N CVN(J,) XN(JC) M N ( J c )  

1 0.99350489(1)t 0.8617020(l)' 0.82868806(1). 
2 1.51639951(1)t 
3 1.817465 16(l)t 6.889(3) 0.6904(9) 

6 2.32898639(1)1 
7 2.44249002(1)t 30.8(1) 0.6168(7) 
9 2.6274401Z(l)t 48.743) 0.597(1) 
I 1  2.77(1) 68.3(4) 0.5828(9) 
I5 2.998(9) 116(1) 0.560(1) 
21 3.24(1) 210(2) 0.536(2) 

5 2.19465654(1)t 16.89(9) 0.645(1) 

We conclude this section with an outline of haw the two-point correlation functions can 
be obtained within the dimer approach [lo, 111. Given two arbitrary spins up and uq in the 
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lattice, their average 

may be computed with the following trick. One chooses a path C from U,, to uq on the 
lattice, which will comprise a number of consecutive spins (U,,, , up>, . . . , upm]. The two- 
point function may also be expressed as 

Now we have that upup,, up,up2, . . . , uPmuq are pairs of nearest-neighbour spins. Therefore, 
we find 

1 
(upuq) = I7 (cosh J + upj sinh J )  n (sinh J +QUI cosh J )  

q=*l (i , j)$C (k.I)€C 

where the first product extends to all the links which do not belong to C and the second 
product runs over the links that do belong to the path. From (9), we arrive finally at the 
expression 

where the sum, as in expression (3), is over all the closed loops on the lattice but with the 
difference that the number ri of links in each loop belonging to C now have to be weighted 
with (tanh J)-I rather than with tanh J .  It becomes obvious that al l  the machinery of the 
dimer formulation can be applied again to transform the sum in (10) into a suitable dimer 
partition function on the decorated lattice, so that 

(11) 

has to keep track of the different weights 

1 
z (u,,uq) = -(coshJ)'(tanh J)'"(detA')"'. 

The appropriate coordination matrix A' = 
that the m + 1 links in C carry in the sum over the closed loops. 

3. Finite-size scaling and critical exponents 

3.1. Finite-sue scnfing 

It is well known that singularities in the free energy (i.e. phase transitions) can only occur 
in the thermodynamic limit. For finite volumes the free energy is an analytic function of the 
temperature and any other parameter in the Hamiltonian. The thermodynamic singularities 
are thus smoothed out around the transition point. A trace of the existence of such non- 
analyticities is the presence of some peaks in the specific heat CV or magnetic susceptibility 
x curves. The dependence of the linear size of the system L on the location of the maxima 
of these peaks and their height enables the thermodynamic limit to be described from finite- 
size data [4]. 



The Ising model on tetrahedron-like lattices: afinite-size analysis 2973 

In second-order phase transitions this round-off is due to the fact that the correlation 
length 6 is limited by the size of the system. This fact defines a pseudocritical coupling 
J*(L)  such that 

At this point the surface contribution to the free energy is not negligible compared to the 
bulk energy. In the vicinity of a second-order transition point .Icr the correlation length 
diverges with a power-law given by 

6(J ' (L))  - L. (12) 

t ( J )  - (J - JJ". (13) 
From (12) and (13) the dependence of the pseudocritical coupling on the lattice size can be 
derived: 

IJ'(L) - J,I - L-'/". (14) 
Unfortunately in practical situations it is a very involved task to compute such a quantity 

J*(L). It is easier to look at the position and height of the peaks mentioned above. If some 
quantity P diverges near the critical pointt as 

P ( J )  - IJ - J J P  p > 0 (15) 
then it can be shown [4] that for a finite volume it attains a maximum value Pmax(J~) at a 
point J L ( P )  given by 

IJL(P) - Jcl - L+ ( W  

Pm(JL) - LP/" (166) 
when L is large enough. In most systems it is found that 

1 ep = - 
V 

(17) 

but this is not a general result. There are some examples where this property does not 
hold: the spherical model, the ideal Bose gas [U] and the one-dimensional q = 00 clock 
model [13]. In the present paper, we will face another situation in which the relation (17) is 
violated. On the other hand, if 0 2 l/u then the behaviour of this quantity at finite volume 
evaluated at the critical point PL(J~) is the same as in (16b) 

PL(JC) - LP'". (18) 
Using (16a) and (16b) the critical coupling Jc and the critical-exponents ratio p / u  can be 
derived from finitesize data. When J, is explicitly known and Op > l/u, then (18) can 
be used instead of (166). In this paper we are mainly concemed with the analysis of the 
susceptibility and the specific heat. So, we will obtain estimates of Jc and the ratios y / v  
and a/u. The rest of the critical exponents may be derived using the scaling relations [14]. 
In particular, in this paper we will check numerically the following equations: 

- = I - -  B Y 
V 2v 

1+--. 
1 
V 2v 

01 - =  

Independent estimates of U and B/IJ will he obtained in terms of the analysis of the 
correlation length (see below) and the magnetization at the critical point, respectively (see 
section 5). 

t Hereafter, we will denote quantities computed in a finite volume with a subscript L meaning the linear size of the 
system (i.e. pL). Whenever no subscript is present, the thermodynamic limit is assumed (i.e. P = limL+m Ft). 
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3.2. Critical point and exponent Bcv 

In section 2 we showed that for lattices up to A1452 we were able to obtain very accurate 
estimates of the internal energy E and the specific heat. These quantities are defined 
hereafter as follows: 

where the factor 3V/2 is equal to the number of links in a lattice of V sites and U ( . )  

is the standard deviation. Thus, the values of CV,, and JL(CV) can be computed with 
high precision. In what follows we will identify the lattice linear size L with the index N 
characterizing the fullerene lattice (see section 1). This choice is consistent as the volume 
increases as V = 12Nz. 

Data will be fitted according to the power-law function JN(CV) = J, + A N - e C V  using 
a least-X2 method. Here the input errors are given by the precision of the computer in 
calculating JN(CV,,,,). In order to obtain a more reliable result, we will sequentially 
remove the point with smallest N .  One can eventually observe a monotonic trend to some 
value, which will be identified with the thermodynamic l i t .  

Our best result is 

Jc = 0.65 850 i 0.00 002 (22) 

for 5 < N < 11. In this case x2 = 0.07 with degrees of freedom. Throughout this paper 
all the emors associated with our final results will be equal to two standard deviations-i.e. 
95% confidence level. The latter result is compatible with the critical point of the king 
model on a toroidal honeycomb lattice, = 1 log(2 + A) = 0.65 848, which can be 
derived easily using duality [14,15]. Thus, our data strongly support the hypothesis that 
both critical points coincide. 

A good estimate of BCV is obtained by repeating the fit with Jc = JPm. The result is 

ecv = 1.745 i 0.015 (23) 

for 6 < N < 11 and with x2 = 1.2. This is in clear disagreement with the result expected 
for a lattice on a torus (Bcv = 1 [5]). This fact makes it necessary to determine the v critical 
exponent, in order to see if the above measurement bears any relation to it (see below). 

We will skip here the analysis of C V ,  as there is a subtle difference between the 
logarithmic and power-law behaviours, particularly when such a power is rather small. 
This will be carried out in section 5. 

3.3. Correlation length and exponent U 

An independent way to compute the critical exponent U is to study the correlation length 
near the critical point. This quantity is defined in terms of the connected two-point function 

(uo. ur)c = (uo . U,) - (uo)(u,) - e+f (24) 

when r is large enough. The connected two-point correlators are equal to the usual ones 
(uo . U,) for J c .I, (unbroken phase). This feature allows their exact computation 
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. .  

14 16 18 20 22 24 26 28 
I 

Figure 5. Values of the unsubstracted two-point comelators (u,au) for different separations r 
and couplings mnstants J =0.57.0.58.. . ..0.62. The least-x2 fits are also depicted. 

using the machinery developed in section 2. (For finite lattices odd quantities such as 
the magnetization are always equal to zero, even in the broken phase.) 

A major problem is how to recover b ( J )  from the finite-volume correlators (U,. u r ) ~ .  
For a torus of linear size L these functions are expected to behave as - cosh((x - L / ~ ) / ( L )  
when x >> 1 .  But this question is not clear for the truncated tetrahedron. On the other hand, 
it is well known [ll] that the correlation length does depend on the direction in which the 
spins 0; are disposed. However, the same critical behaviour is expected for all the possible 
directions. 

This study has been carried out on the lattice Avz, which is the largest one allowed by 
our computer facilities. We believe that this one is large enough to see the thermodynamic 
limit. We have chosen couples of spins along the diagonal in the representation in figure 4 
of the tetrahedron unfolded on the plane. Our choice for U, allowed us to introduce an 
increasing distance between spins running from 3,6, . . . up to 27 (in units of the lattice 
spacing). At r = 27, both spins are located at antipodal points. If we continue along the 
diagonal we finally arrive at UO. For this reason, we expect that the correlators will behave, 
for large r ,  like a symmetrized version of equation (24). In order to improve our results, 
we include in our ansatz the correct leading term for the square lattice on the torus [ 1 I] 

(uou,) = fe-r /s( l+ o ( l / r ) )  (25) f i  
suitably symmetrized around r = 27. 

We have analysed the cases J = 0.58, 0.59, 0.60, 0.61 and 0.62 (see figure 5). We 
have obtained extremely good fits for all these cases, giving differences of~order - 
Although the lattice A-. like any of the lattices inscribed on the tetrahedron, is not 
homogeneous, it is remarkable that the values of the two-point functions at each different 
J fit, to a high degree of precision, the correct leading behaviour for the king model on 
a square lattice on the torus. The deviation that we have found from the dependence (25) 
appears to be even smaller than for similar measurements carried out for the lattice on a 
torus. The estimated values of the correlation length are shown in figure 6 and will be 
used in the computation of the v critical exponent. We tried unsuccessfully to fit data for 
J > 0.62 to (25). The reason is that very close to the critical point we have to take into 
account the U( l / r )  (or even higher) terms in equation (25). 
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0.22 , 

0.06' " " " " " ' '  
0.03 0.04 0.05 0.06 0.07 0.08 0.09 J - r p . .  

Figure 6. Values of C(J) - '  for those J shown in figure 5 .  The slraiphl line corresponds to the 
xz fit. 

We tried to fit the values of ciL9(J) according to (13). We obtained a value equal to 
v = 1.01 rtO.04 with x 2  = 0.36. However, if we drop the point with J = 0.62 (the closest 
to Jc) the result is 

v = 1.00 f 0.06 

with a remarkable small value for x 2  - 7 x 

be summarized in the following points: 

(26) 

The conclusions of the analysis of the data coming from the dimer computations can 

(a) the critical point is compatible with 
(b) the critical exponent U = 1.00 & 0.06; 
(c) the finitesize exponent 
In summary, our results suggest that the critical properties of the king model on the 

truncated tetrahedron are the same as on the torus. However, we find a very clear difference 
in the finite-size behaviour of these models as long as the scaling of pseudocritical coupling 
constants (determined from the maxima of the specific heat) does not match the scaling 
behaviour of the correlation length. The thermodynamic limit is achieved much faster on 
the tetrahedron than on the torus, at least with regard to the specific heat. 

= 1.745 i 0.015 is significantly different from l / v .  

4. Technical aspects of the MC simulations 

We have performed several MC runs for different lattice volumes V = 12N2 and coupling 
constants J .  The relevant information about the simulations can be found in table 3. 

We used a Metropolis algorithm with the R250 pseudo-random-number generator 11-51 
initialized with the RANMAR subroutine. The period of such a generator is equal to zZ0 - 1. 
Recently, it has been claimed 1161 that the combination of the Metropolis algorithm with 
the R250 generator gives better results than other more involved procedures. We have 
compared the values obtained by both the dimer approach and the direct MC simulation. 
They were consistent, within statistical enor. 
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Table 3. Number of Monte Carlo steps prformed for each simulation in a lattice of volume 
V = 12N2 and coupling conslam J. 

N J  MC SkpS 

3 JF" 3 x lo6 
3 0.62 3 x IO6 

5 0.64 3 x I06 
5 Jc-y 3 x 106 

7 JFms 12x IO6 
9 J:" 12 x lo6 

15 JFms 1 1  x106 
I 1  32" 12x 106 

21 J F  12x 106 

In all cases, we have measured the internal energy density and the magnetization defined 
as 

We have~also measured the specific heat and the magnetic pure-phase susceptibility 

In all cases, we discarded the first IO5 MC steps for terminalization. Then we have 
measured each observable once every 100 MC steps. In this way we obtained statistically 
independent data, as they could be checked by computing the corresponding autocorrelation 
times [17]. 

In order to calculate the maximum value of the specific heat and the susceptibility 
we have used the spectral density method (SDM) [18]. At a given coupling J, we can 
obtain the histograms N ( E ,  M ;  J )  which keep track of the numbers of configurations with 
magnetization M and internal density energy E .  This information is enough to compute 
the expectation value of any function f ( M ,  E )  at any other coupling J'. In our case, 
the magnetic field is zero and in equations (ZO), (21). (27) and (28) the observables do 
not depend on E and M simultaneously. For these reasons we could use the following 
formulae: 

where the one-dimensional histograms are defined as follows 

&(E; J )  = C N ( E ,  M ;  J )  
M 
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The SDM gives the correct answer for couplings J' close to the coupling J where the 
simulation was performed. A criterion for the applicability of such method is [I81 

(33) 

In most cases, one simulation only at J = Jc is enough to determine the maximum of CV 
and x .  However, for the smaller lattices an additional run had to be performed in order to 
obtain a reliable estimate of such quantities. 

We have divided the entire sample into typically 30-120 subsamples, each containing 
... 1000 measures. For each subsample we computed every quantity (including 
CV,,, JN(CV) ,  . . .). With these estimates we calculated the statistical errors using the 
jackknife method [19]. In this way, the effect of correlation among data was taken into 
account. 

We performed all the Mc simulations on a VAX 9000 machine with a vectorial processor. 
The program was not fully vectorizable as the lattice could not be split into two disjoint 
sublattices, i.e. every element of one sublattice is surrounded by elements belonging to the 
other onet. However, we could divide the whole lattice into three subsets. The elements 
of the first two were arranged on two disjoint triangular sublattices, so that their update 
could be fully vectorized. On the other hand, the rest of the spins can be located on two 
lines joining pairs of vertices on the tetrahedron and their numbers depend explicitly on 
the planar representation of the lattice. For these, the update is clearly not vectorizable. 
However, their effect on the CPU time is not very important for the larger lattices, as their 
number behaves as - V'''. 

5. Results of the MC simulations 

5.1. Position of the critical point 

Here we will repeat the analysis of section 3 but with all the data of table 1. For data from 
the dimer analysis, the input error will be taken as the precision of the subroutines used. 

' For those from the MC simulations the error is given by the jack-knife method described in 
section 4. The data for N > 11 possess large error bars compared with others with smaller 
N .  For this reason the fits presented in section 3 cannot have large variations. In fact, the 
final results are the same as those presented in the preceding section (equations (22) and 
(23)) and with similar xz values (see figure 7). 

If we repeat the same procedure with the susceptibility we obtain an estimate for Jc 
compatible with the later one, but with a larger error bar. If we fix this quantity to JPw 
we arrive at the following estimate for the exponent 0, 

e, = 1.01 f 0.02 (34) 

for 9 < N < 21 and x z  = 0.8 (see figure 7). 

the torus. We conclude that 
We observe that e, is close the value l l v  = 1 to in agreement with the king model on 

1 - =e,  < BC" 
v (35) 

t This feature has to do with fie onset of frustration in the antiferromagnetic regime 
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N 

Figure 7. Values of the position of the maxima of the specific heat (circles) and the magnetic 
susceptibility (squares) with respect to the critical coupling pS. The power-law fits are also 
depicted 

and this feature implies that one can obtain the critical exponents using either equation (16b) 
or equation (18). As we have identified the critical coupling of our system, it seems more 
natural to rely on our conclusions on equation (18). In any case, the values obtained from 
equation (16b) are always consistent with those presented in this paper within statistical 
errors. 

5.2. Exponent ratios y / v  and f l / u  

The value of y / u  can be derived using the value of the critical magnetic susceptibility 
xN(Jc ) .  We have fitted our data to XN(&) = ANY/” and our best result is y / v  = I.73iz0.02 
for values of N ranging from 9 to 21 and with x2 = 0.79. This is very close to the standard 
king model result y / u  = 7/4 = 1.75. If we fix y / u  to this value we obtain a x2 value of - 2.8, which shows that the fit is reasonably good (see figure 8). 

1 

I IO 
N 

Figure 8. Power-law fits of the values of the speafic hem (squares) and the magnetic 
susceptibility (circles) at the critical point 1,. 
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To determine the value of p / u  in an independent way (i.e. not using scaling relation 
In the (19~))  we will fix our attention on the magnetization at the critical point. 

thermodynamic limit, the magnetization near Jc behaves as 

M ( J )  - IJ - JclB. (36) 

Using argument similar to those in section 3 it can be predicted that 

M,(JC) - N-@/". (37) 

The result of performing such a fit is p / u  = 0.12610.004 using data with 7 < N < 21 and 
with x 2  = 0.33 (see figure 9). This is also very close to the Ising value p / u  = 1/8 = 0.125. 
This result supports the hypothesis that the scaling relation (19u) holds for this model. 

N 

Figure 9. The same as in figure 8 for the magnetization M,v(Js) ,  

This feature can be used in order to obtain a more accurate estimate of these exponents. 
We can try to fit X N ( J , )  and M,(JC) simultaneously using explicitly the relation (19a). The 
result is 

y / u  = 1.748 !c 0.008 j?/u = 0.126 f. 0.004 (38) 

Thus, our results strongly suggest that the ratio y / u  = 7/4, as in the Ising model on a 
torus. Notice that the error in this ratio is less than 0.6%. 

5.3. Exponent ratio a / v  

We can perform the same routine for the specific heat and try to obtain the exponent ratio 
a/u. If we try to fit data to a power-law function C V , ( J , )  = A + BN"", we do not obtain 
a satisfactory result. The best result gives a ratio a/u * 0.060 with x 2  - 9 and 9 < N Q 21 
(see figure 8). On the other hand, and motivated in part by the preceding results, we could 
try to fit the data to a logarithmic function. CV,(JC) = A +  B log N :  In this case, the fit is 
successful giving a xz = 1.9 with 7 4 N < 21 (see figure 10). This immediately implies 
that 

a=O (39) 
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and using equation (196) 

u = l  (40) 

which is in agreement with the result from direct measurements of the correlation length 
displayed in section 3. Thus, both exponents take the same values as in the king model on 
the torus. On the other hand, we have also verified that the scaling relation (19b) does hold 
in this model. 

4.00 

3.69 
3.38 
3.07 
2.76 

2.14 

;::;I/, , , , , , , , , 
1.21 

0.90 
10 

N 

Figure 10. Logarithmic !east-X2 fit of C V , ( f C )  

6. Conclusions and outlook 

In this paper we have presented the first fundamental study of the critical properties of an 
king model on a lattice with the topology of the sphere. In particular, we have chosen the 
family of honeycomb lattices that can be constructed on a tetrahedron. Our results can be 
summarized as follows. 

(i) The dimer approach is very useful and competitive for lattices up to - IO3 points. It 
provides very accurate data for the internal energy, specific heat and two-point correlators. 

(ii) The critical ,properties of the Ising model on the tetrahedron are just the same as 
on the torus. In particular, we have checked that J, is the same, as well as the critical 
exponents U, a, y and f i .  

(iii) We have also checked the validity of two scaling relations (190) and (19b) among 
these exponents. 

(iv) The finite-size scaling properties of these two systems are not the same. In our 
case, the position of the maxima of the specific heat scales near Jc with a critical exponent 
that does not bear any relation to the critical behaviour of the correlation length. That is, 
the thermodynamic limit is achieved faster on the tetrahedron. However, the behaviour of 
the susceptibility is the same in both cases. 

Our results suggest that the same analysis carried out for other types of lattice with 
the same topology will yield the same conclusions: the critical behaviour will not change, 
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although variations in their finite-size properties would be expected to hold. All of them 
would belong to the same universality class of the king model on a torus. 

On the other hand, the king model on the tetrahedron can be viewed as the Ising 
model with some non-standard boundary conditions. These non-standard conditions have the 
advantage that the critical behaviour is reached faster than for periodic boundary conditions. 

Ferdinand and Fisher [4,5] studied how the exponent &v varies for the king model 
defined on a square lattice on an m x n torus. They concluded that J,(CV) behaves as 

where 1 = (m-2 + n-')-' measures the linear size of the torus and q = m/n is its shape. 
They also showed that b(q) is not a monotonic function of 7. In particular, b(q) > 0 in 
the range q E (si', qo) with qo = 3.139278, and b(q) c 0 in .rl E (0, q;') U (q0.00). At 
exactly q = qo and q;' the function b(q) vanishest, so at these points the leading term in 
(41) vanishes and its behaviour is controlled by the subleading term. In this model it can 
be written as 

The behaviour of b(q )  as a function of the shape of the torus is explained as a highly non- 
trivial interplay between the different terms which appear in the expression of the partition 
function. We believe that the same feature is present in the king model on the truncated 
tetrahedron. In this case, the shape of the lattice is fixed, but the chosen boundary conditions 
are the basic ingredient which makes the leading term in (41) vanish. We do not understand 
why, apparently, the next-to-leading term of the model considered here is not of the form 
given by (42). Furthermore, we tried to fit our data to equation (42) and we found a worse 
x 2  value than the one presented in section 3.2. For instance, using the last four points 
(N > 9) we obtained x z  = 8.8 with three degrees of freedom. However, it would be 
interesting to study larger lattices in order to verify our conclusions conceming that point. 

We should mention that our conclusions may not apply to the antiferromagnetic regime. 
The reason is that for such boundary conditions, the lattice is not bipartite. Thus, the 
phenomenon of frustration may occur in that regime. This feature is absent in the king 
model on the torus. In this case, the lattice is bipartite and for sufficiently low temperatures 
we find a N k l  ground state. This question, on the tetrahedron, is currently under research. 

Finally, we would like to say a few words about the continuum theory which is attained 
in the thermodynamic limit. The evidence we have found for scaling suggests a description 
in terms of the fields and weights of a conformal field theory. This cannot be a trivial 
example of field theory on the sphere (or on the plane), since four curvature singularities arise 
which cannot be removed by conformal transformations. Under the assumption of conformal 
invariance, though, we could still stick three of the vertices together (at a point we may take 
as infinity) by means of SL(2, C) transformations, leaving a lone singularity in the bulk. 
This picture is close in spirit to the Coulomb gas representation of conformal field theories 
but with the difference that now not all the curvature is pinched at the point at infinity. A 
conical singularity on the plane may have sensible effects on the correlation functions of 
the theory. We recall here another example with non-trivial boundary conditions, namely 

t The same occurs for q = 0, m [SI 
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that of a conformal field theory on the semiplane. In this case, correlators which are taken 
at a finite distance to the boundary do not measure the conformal weights of the theory 
on the plane [20]. In our model, it may not be necessary to compute correlators that are 
infinitely far away from the singularity to measure bulk conformal weights, but again some 
dependence on the location of the points should be expected. This point deserves further 
clarification, though its investigation in the lattice would require more powerful computer 
facilities than those used in the present work. 
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